Surface restructuring of Cu-based single-atom alloy catalysts under reaction conditions: the essential role of adsorbates.
نویسندگان
چکیده
The stabilities and catalytic performances of single-atom alloy (SAA) structures under the reaction conditions of acetylene hydrogenation are thoroughly examined utilizing density functional theory (DFT) calculations. Four Cu-based alloys with stable SAA structures reported before, namely PdCu, PtCu, RhCu and NiCu alloys, are investigated here. We find that the SAA structures of PdCu and PtCu are stable during the reaction, whilst the RhCu-SAA and NiCu-SAA structures are thermodynamically unstable upon acetylene adsorption and surface restructuring through the aggregation of the Rh and Ni atoms on the surfaces may also happen. It is also found that all the investigated structures of RhCu and NiCu alloys may give rise to the further hydrogenation of ethylene. However, desorption of ethylene is favored over the PdCu-SAA and PtCu-SAA surfaces, indicating that acetylene could be selectively hydrogenated to ethylene over these two surfaces, which is consistent with the experimental observations reported in the literature. Our work provides new understandings regarding SAA surface structures under reaction conditions and their catalytic reaction performances upon aggregation of the doped metal atoms.
منابع مشابه
Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation.
The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers re...
متن کاملSurface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts
The surface chemistry of methane on Ni-ZrO2 and bimetallic CuNi-ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke f...
متن کاملThe Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study
In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...
متن کاملStability of bimetallic Pd-Zn catalysts for the steam reforming of methanol
ZnO-supported palladium-based catalysts have been shown in recent years to be both active and selective towards the steam reforming of methanol, although they are still considered to be less active than traditional copper-based catalysts. The activity of PdZn catalysts can be significantly improved by supporting them on alumina. Here we show that the Pd/ZnO/Al2O3 catalysts have better long-term...
متن کاملB-podands as efficient catalysts for the ring opening of epoxides in water: A versatile and atom economical method for the synthesis of vicinal azidoalcohols
For the first time B-podands have been studied as an efficient and powerful catalysts in the ring opening of epoxides with azide anion in water. The reaction afforded the corresponding 1,2-azidoalcohols with high regioselectivity under mild reaction conditions and in a highly atom economic fashion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 27 شماره
صفحات -
تاریخ انتشار 2017